Advancing Soilless Agriculture with Sensor and Wireless Technologies: A Comprehensive Review
Abstract
Keywords
Full Text:
PDFReferences
X. Wang, “Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security,” Land (Basel), vol. 11, no. 4, p. 484, Mar. 2022, doi: 10.3390/land11040484.
L. Mueller et al., “Agricultural Landscapes: History, Status and Challenges,” Exploring and Optimizing Agricultural Landscapes, pp. 3–54, 2021, doi: 10.1007/978-3-030-67448-9_1.
A. Fatima et al., “Loss of Agro-Biodiversity and Productivity Due to Climate Change in Continent Asia: A Review,” in Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives I, Singapore: Springer Singapore, pp. 51–71, 2020, doi: 10.1007/978-981-15-2156-0_2.
S. B. Wassie, “Natural resource degradation tendencies in Ethiopia: a review,” Environmental Systems Research, vol. 9, no. 1, p. 33, Dec. 2020, doi: 10.1186/s40068-020-00194-1.
M. C. Manna et al., “Organic farming: A prospect for food, environment and livelihood security in Indian agriculture,” pp. 101–153, 2021, doi: 10.1016/bs.agron.2021.06.003.
C. M. Viana, D. Freire, P. Abrantes, J. Rocha, and P. Pereira, “Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review,” Science of The Total Environment, vol. 806, p. 150718, Feb. 2022, doi: 10.1016/j.scitotenv.2021.150718.
G. He, X. Liu, and Z. Cui, “Achieving global food security by focusing on nitrogen efficiency potentials and local production,” Glob Food Sec, vol. 29, p. 100536, Jun. 2021, doi: 10.1016/j.gfs.2021.100536.
M. Habib-ur-Rahman et al., “Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia,” Front Plant Sci, vol. 13, Oct. 2022, doi: 10.3389/fpls.2022.925548.
B. K. Kogo, L. Kumar, and R. Koech, “Climate change and variability in Kenya: a review of impacts on agriculture and food security,” Environ Dev Sustain, vol. 23, no. 1, pp. 23–43, Jan. 2021, doi: 10.1007/s10668-020-00589-1.
E. E. Rezaei et al., “Climate change impacts on crop yields,” Nat Rev Earth Environ, vol. 4, no. 12, pp. 831–846, Nov. 2023, doi: 10.1038/s43017-023-00491-0.
A. Gomez-Zavaglia, J. C. Mejuto, and J. Simal-Gandara, “Mitigation of emerging implications of climate change on food production systems,” Food Research International, vol. 134, p. 109256, Aug. 2020, doi: 10.1016/j.foodres.2020.109256.
S. Karki, P. Burton, and B. Mackey, “The experiences and perceptions of farmers about the impacts of climate change and variability on crop production: a review,” Clim Dev, vol. 12, no. 1, pp. 80–95, Jan. 2020, doi: 10.1080/17565529.2019.1603096.
V. Sharma, A. K. Tripathi, and H. Mittal, “Technological revolutions in smart farming: Current trends, challenges & future directions,” Comput Electron Agric, vol. 201, p. 107217, Oct. 2022, doi: 10.1016/j.compag.2022.107217.
R. E. Grumbine, J. Xu, and L. Ma, “An Overview of the Problems and Prospects for Circular Agriculture in Sustainable Food Systems in the Anthropocene,” Circular Agricultural Systems, vol. 1, no. 1, pp. 1–11, 2021, doi: 10.48130/CAS-2021-0003.
M. Petersen-Rockney et al., “Narrow and Brittle or Broad and Nimble? Comparing Adaptive Capacity in Simplifying and Diversifying Farming Systems,” Front Sustain Food Syst, vol. 5, Mar. 2021, doi: 10.3389/fsufs.2021.564900.
E. M. B. M. Karunathilake, A. T. Le, S. Heo, Y. S. Chung, and S. Mansoor, “The Path to Smart Farming: Innovations and Opportunities in Precision Agriculture,” Agriculture, vol. 13, no. 8, p. 1593, Aug. 2023, doi: 10.3390/agriculture13081593.
D. Huo, A. W. Malik, S. D. Ravana, A. U. Rahman, and I. Ahmedy, “Mapping smart farming: Addressing agricultural challenges in data-driven era,” Renewable and Sustainable Energy Reviews, vol. 189, p. 113858, Jan. 2024, doi: 10.1016/j.rser.2023.113858.
R. Abbasi, P. Martinez, and R. Ahmad, “The digitization of agricultural industry – a systematic literature review on agriculture 4.0,” Smart Agricultural Technology, vol. 2, p. 100042, Dec. 2022, doi: 10.1016/j.atech.2022.100042.
M. Ataei Kachouei, A. Kaushik, and Md. A. Ali, “Internet of Things‐Enabled Food and Plant Sensors to Empower Sustainability,” Advanced Intelligent Systems, vol. 5, no. 12, Dec. 2023, doi: 10.1002/aisy.202300321.
E. E. K. Senoo et al., “IoT Solutions with Artificial Intelligence Technologies for Precision Agriculture: Definitions, Applications, Challenges, and Opportunities,” Electronics (Basel), vol. 13, no. 10, p. 1894, May 2024, doi: 10.3390/electronics13101894.
C. Parra-López et al., “Integrating digital technologies in agriculture for climate change adaptation and mitigation: State of the art and future perspectives,” Comput Electron Agric, vol. 226, p. 109412, Nov. 2024, doi: 10.1016/j.compag.2024.109412.
A. Z. Bayih, J. Morales, Y. Assabie, and R. A. de By, “Utilization of Internet of Things and Wireless Sensor Networks for Sustainable Smallholder Agriculture,” Sensors, vol. 22, no. 9, p. 3273, Apr. 2022, doi: 10.3390/s22093273.
M. Amiri-Zarandi, M. Hazrati Fard, S. Yousefinaghani, M. Kaviani, and R. Dara, “A Platform Approach to Smart Farm Information Processing,” Agriculture, vol. 12, no. 6, p. 838, Jun. 2022, doi: 10.3390/agriculture12060838.
J. Astill, R. A. Dara, E. D. G. Fraser, B. Roberts, and S. Sharif, “Smart poultry management: Smart sensors, big data, and the internet of things,” Comput Electron Agric, vol. 170, p. 105291, Mar. 2020, doi: 10.1016/j.compag.2020.105291.
C. Maraveas, D. Piromalis, K. G. Arvanitis, T. Bartzanas, and D. Loukatos, “Applications of IoT for optimized greenhouse environment and resources management,” Comput Electron Agric, vol. 198, p. 106993, Jul. 2022, doi: 10.1016/j.compag.2022.106993.
A. Ali, T. Hussain, N. Tantashutikun, N. Hussain, and G. Cocetta, “Application of Smart Techniques, Internet of Things and Data Mining for Resource Use Efficient and Sustainable Crop Production,” Agriculture, vol. 13, no. 2, p. 397, Feb. 2023, doi: 10.3390/agriculture13020397.
F. Fuentes-Peñailillo, K. Gutter, R. Vega, and G. C. Silva, “Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management,” Journal of Sensor and Actuator Networks, vol. 13, no. 4, p. 39, Jul. 2024, doi: 10.3390/jsan13040039.
H. N. Ang, M. W. Lim, and W. S. Chua, “Design of a water quality monitoring system utilizing IOT platform for hydroponics application,” AIP Conference Proceedings, vol. 2610, no. 1, 2022, doi: 10.1063/5.0099653.
P. Mishra, L. Jimmy, G. A. Ogunmola, T. V. Phu, A. Jayanthiladevi, and T. P. Latchoumi, “Hydroponics Cultivation Using Real Time Iot Measurement System,” J Phys Conf Ser, vol. 1712, no. 1, p. 012040, Dec. 2020, doi: 10.1088/1742-6596/1712/1/012040.
P. C. Menon, “IoT enabled Aquaponics with wireless sensor smart monitoring,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 171–176, Oct. 2020, doi: 10.1109/I-SMAC49090.2020.9243368.
M. Alselek, J. M. Alcaraz-Calero, J. Segura-Garcia, and Q. Wang, “Water IoT Monitoring System for Aquaponics Health and Fishery Applications,” Sensors, vol. 22, no. 19, p. 7679, Oct. 2022, doi: 10.3390/s22197679.
R. Mahkeswaran and A. K. Ng, “Smart and Sustainable Home Aquaponics System with Feature-Rich Internet of Things Mobile Application,” in 2020 6th International Conference on Control, Automation and Robotics (ICCAR), pp. 607–611, Apr. 2020, doi: 10.1109/ICCAR49639.2020.9108041.
C. A. Jamhari, W. K. Wibowo, A. R. Annisa, and T. M. Roffi, “Design and Implementation of IoT System for Aeroponic Chamber Temperature Monitoring,” in 2020 Third International Conference on Vocational Education and Electrical Engineering (ICVEE), pp. 1–4, Oct. 2020, doi: 10.1109/ICVEE50212.2020.9243213.
M. Ahmed, A. Farrukh, M. I. Shah, S. Jamil, I. H. Kalwar, and A. Kamran, “Design and Development of IoT Based Aeroponics Growbox,” in 2021 International Conference on Computing, Electronic and Electrical Engineering (ICE Cube), pp. 1–7, Oct. 2021, doi: 10.1109/ICECube53880.2021.9628248.
R. GAUTAM et al., “Advances in soilless cultivation technology of horticultural crops: Review,” The Indian Journal of Agricultural Sciences, vol. 91, no. 4, Oct. 2022, doi: 10.56093/ijas.v91i4.112621.
D. M. Papadimitriou et al., “Impact of container geometry and hydraulic properties of coir dust, perlite, and their blends used as growing media, on growth, photosynthesis, and yield of Golden Thistle (S. hispanicus L.),” Sci Hortic, vol. 323, p. 112425, Jan. 2024, doi: 10.1016/j.scienta.2023.112425.
N. Ahmad, Md. M. Hasan, M. Rohomun, R. Irin, and R. M. Rahman, “IoT and Computer Vision Based Aquaponics System,” in 2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), pp. 149–155, Dec. 2022, doi: 10.1109/SNPD54884.2022.10051814.
J. Colt, A. M. Schuur, D. Weaver, and K. Semmens, “Engineering Design of Aquaponics Systems,” Reviews in Fisheries Science & Aquaculture, vol. 30, no. 1, pp. 33–80, Jan. 2022, doi: 10.1080/23308249.2021.1886240.
H. Zhang et al., “Recovery of nutrients from fish sludge in an aquaponic system using biological aerated filters with ceramsite plus lignocellulosic material media,” J Clean Prod, vol. 258, p. 120886, Jun. 2020, doi: 10.1016/j.jclepro.2020.120886.
F. N. Maluin, M. Z. Hussein, N. N. L. Nik Ibrahim, A. Wayayok, and N. Hashim, “Some Emerging Opportunities of Nanotechnology Development for Soilless and Microgreen Farming,” Agronomy, vol. 11, no. 6, p. 1213, Jun. 2021, doi: 10.3390/agronomy11061213.
J. Cai et al., “A modified aeroponic system for growing small-seeded legumes and other plants to study root systems,” Plant Methods, vol. 19, no. 1, p. 21, Mar. 2023, doi: 10.1186/s13007-023-01000-6.
Y. Li et al., “End-Of-Day LED Lightings Influence the Leaf Color, Growth and Phytochemicals in Two Cultivars of Lettuce,” Agronomy, vol. 10, no. 10, p. 1475, Sep. 2020, doi: 10.3390/agronomy10101475.
Mamta, A. Paul, and R. Tiwari, “Smart Home Automation System Based on IoT using Chip Microcontroller,” in 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 564–568, Mar. 2022, doi: 10.23919/INDIACom54597.2022.9763287.
A. Mody and R. Mathew, “AgroFarming - An IoT Based Approach for Smart Hydroponic Farming,” Proceeding of the International Conference on Computer Networks, Big Data and IoT (ICCBI-2019), pp. 348–355, 2020, doi: 10.1007/978-3-030-43192-1_40.
J. Chaiwongsai, “Automatic Control and Management System for Tropical Hydroponic Cultivation,” in 2019 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–4, May 2019, doi: 10.1109/ISCAS.2019.8702572.
A. Ullah, S. Aktar, N. Sutar, R. Kabir, and A. Hossain, “Cost Effective Smart Hydroponic Monitoring and Controlling System Using IoT,” Intelligent Control and Automation, vol. 10, no. 04, pp. 142–154, 2019, doi: 10.4236/ica.2019.104010.
J. P. P. Banjao, K. S. Villafuerte, and J. F. Villaverde, “Development of Cloud-Based Monitoring of Abiotic Factors in Aquaponics using ESP32 and Internet of Things,” in 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM), pp. 1–6, Dec. 2020, doi: 10.1109/HNICEM51456.2020.9400083.
Azhari, D. Simanjuntak, L. Hakim, and Sabar, “Design and control system of temperature and water level in hydroponic plants,” J Phys Conf Ser, vol. 2193, no. 1, p. 012018, Feb. 2022, doi: 10.1088/1742-6596/2193/1/012018.
F. Supegina, . Y., F. Sirait, M. F. Md Din, N. F. Makmor, and M. T. Jusoh, “Smart Control and Management System for Hydroponic Plant Growth,” Jurnal Kejuruteraan, vol. si4, no. 2, pp. 45–52, Oct. 2021, doi: 10.17576/jkukm-2021-si4(2)-07.
I. K. A. Enriko, F. N. Gustiyana, F. B. G. Pratama, A. Luthfi, S. Kuntadi, and N. I. Febriyanti, “Implementation of Ultrasonic Sensor Using LoRaWAN Protocol for Monitoring Water Level in Aquaponic Pond,” in 2024 10th International Conference on Wireless and Telematics (ICWT), pp. 1–6, Jul. 2024, doi: 10.1109/ICWT62080.2024.10674669.
M. S. Farooq, R. Javid, S. Riaz, and Z. Atal, “IoT Based Smart Greenhouse Framework and Control Strategies for Sustainable Agriculture,” IEEE Access, vol. 10, pp. 99394–99420, 2022, doi: 10.1109/ACCESS.2022.3204066.
A. D. Boursianis et al., “Smart Irrigation System for Precision Agriculture—The AREThOU5A IoT Platform,” IEEE Sens J, vol. 21, no. 16, pp. 17539–17547, Aug. 2021, doi: 10.1109/JSEN.2020.3033526.
N. Sadek, N. kamal, and D. Shehata, “Internet of Things based smart automated indoor hydroponics and aeroponics greenhouse in Egypt,” Ain Shams Engineering Journal, vol. 15, no. 2, p. 102341, Feb. 2024, doi: 10.1016/j.asej.2023.102341.
F. Rozie, I. Syarif, and M. U. H. Al Rasyid, “Design and implementation of Intelligent Aquaponics Monitoring System based on IoT,” in 2020 International Electronics Symposium (IES), pp. 534–540, Sep. 2020, doi: 10.1109/IES50839.2020.9231928.
J. Wang, M. Chen, J. Zhou, and P. Li, “Data communication mechanism for greenhouse environment monitoring and control: An agent-based IoT system,” Information Processing in Agriculture, vol. 7, no. 3, pp. 444–455, Sep. 2020, doi: 10.1016/j.inpa.2019.11.002.
M. G. Nayagam, B. Vijayalakshmi, K. Somasundaram, M. A. Mukunthan, C. A. Yogaraja, and P. Partheeban, “Control of pests and diseases in plants using IOT Technology,” Measurement: Sensors, vol. 26, p. 100713, Apr. 2023, doi: 10.1016/j.measen.2023.100713.
D. Gao, Q. Sun, B. Hu, and S. Zhang, “A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles,” Sensors, vol. 20, no. 5, p. 1487, Mar. 2020, doi: 10.3390/s20051487.
R. Akhter and S. A. Sofi, “Precision agriculture using IoT data analytics and machine learning,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 8, pp. 5602–5618, Sep. 2022, doi: 10.1016/j.jksuci.2021.05.013.
R. Dendi, A. Pramana, A. Raditya, C. Baswara, R. D. A. Pramana, and A. R. C. Baswara, “Implementation of Tsukamoto Fuzzy Logic for Watering Interval Control in Mini Greenhouse Temperature and Humidity Monitoring System with Aeroponic Method,” Buletin Ilmiah Sarjana Teknik Elektro, vol. 6, no. 3, pp. 223–236, 2024, doi: 10.12928/biste.v6i3.10809.
A. Chandranata, D. Kurniadi, and F. Aryananda, “Design and Development of a PPM Control System for Aeroponic Lettuce Plant Nutrient Based on Microcontrollers and Internet of Things,” Journal of Social Research, vol. 3, no. 2, Feb. 2024, doi: 10.55324/josr.v3i2.1938.
Z. Pastor et al., “Aquaponics Water Monitoring and Power System,” in 2019 IEEE Global Humanitarian Technology Conference (GHTC), pp. 1–4, Oct. 2019, doi: 10.1109/GHTC46095.2019.9033016.
C. B. D. Kuncoro, T. Sutandi, C. Adristi, and Y.-D. Kuan, “Aeroponics Root Chamber Temperature Conditioning Design for Smart Mini-Tuber Potato Seed Cultivation,” Sustainability, vol. 13, no. 9, p. 5140, May 2021, doi: 10.3390/su13095140.
I. R. Varughese, J. P. Joy, R. Roy, and T. Benny, “Automation in Monitoring of Hydroponics for Tomato,” Int J Res Appl Sci Eng Technol, vol. 9, no. VI, pp. 761–765, Jul. 2021, doi: 10.22214/ijraset.2021.36384.
O. N. Samijayani, R. Darwis, S. Rahmatia, A. Mujadin, and D. Astharini, “Hybrid ZigBee and WiFi Wireless Sensor Networks for Hydroponic Monitoring,” in 2020 International Conference on Electrical, Communication, and Computer Engineering (ICECCE), pp. 1–4, Jun. 2020, doi: 10.1109/ICECCE49384.2020.9179342.
A. B. Emge, I. Afrianto, and S. Atin, “Temperature and Humidity Monitoring System using Wireless Based Xbee on Hydroponic Plants,” IOP Conf Ser Mater Sci Eng, vol. 879, no. 1, p. 012097, Jul. 2020, doi: 10.1088/1757-899X/879/1/012097.
S.-J. Hsiao and W.-T. Sung, “Building a Fish–Vegetable Coexistence System Based on a Wireless Sensor Network,” IEEE Access, vol. 8, pp. 192119–192131, 2020, doi: 10.1109/ACCESS.2020.3032795.
W. Wang, Y. Jia, K. Cai, and W. Yu, “An Aquaponics System Design for Computational Intelligence Teaching,” IEEE Access, vol. 8, pp. 42364–42371, 2020, doi: 10.1109/ACCESS.2020.2976956.
A. Eraliev and G. Bracco, “Design and Implementation of ZigBee Based Low-Power Wireless Sensor and Actuator Network (WSAN) for Automation of Urban Garden Irrigation Systems,” in 2021 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), pp. 1–7, Apr. 2021, doi: 10.1109/IEMTRONICS52119.2021.9422568.
L. K. Tolentino et al., “IoT-Based Automated Water Monitoring and Correcting Modular Device via LoRaWAN for Aquaculture,” International Journal of Computing and Digital Systems, vol. 10, no. 1, pp. 533–544, Apr. 2021, doi: 10.12785/ijcds/100151.
K. R., R. Thakur, and S. Roy, “Enhancing Hydroponic Farming Productivity Through IoT-Based Multi-Sensor Monitoring System,” in Proceedings of the 9th International Conference on Internet of Things, Big Data and Security, SCITEPRESS - Science and Technology Publications, pp. 351–357, 2024, doi: 10.5220/0012741300003705.
DOI: https://doi.org/10.21107/jsa.v2i1.18
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Muhammad Haryo Setiawan, Alfian Ma’arif, Abdel-Nasser Sharkawy, Phichitphon Chotikunnan, Rania Majdoubi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Journal of Science in Agrotechnology
ISSN: 2986-1411
Published by: Universitas Trunojoyo Madura, Indonesia
Organized by: Lembaga Penelitian dan Pengabdian Masyarakat, Universitas Trunojoyo Madura, Indonesia
Address: Gedung Graha Utama Lt.1, Universitas Trunojoyo Madura, Jl. Raya Telang, Kamal Bangkalan, Kode Pos 69162, Madura
Website: https://jsa.trunojoyo.ac.id/jsa
Email: jsa@trunojoyo.ac.id