Exogenous melatonin applications on acid rain stress mitigation in tea (Camellia sinensis)

Bagus Aradea, Historiawati Historiawati, Murti Astiningrum

Abstract


Rapid industrial development, motor vehicle transportation, volcanic eruptions, fossil fuel use, and increased acid gas emissions exacerbate acid rain, which directly damages plants and inhibits photosynthesis. This damage includes morphological, anatomical, and photosynthetic pigment changes. Melatonin prevents macromolecular damage, plays a role in regulating primary and secondary metabolism, including gene transcription, and enzyme activity, to reduce damage caused by abiotic stress. This study aimed to investigate the internal application interval and concentration of melatonin in tea plants to increase stress tolerance and reduce the impact of acid rain. This study was designed using split-plots, melatonin application intervals of 1, 3, and 5 days, and melatonin concentrations of 0, 50, 100, and 150 µM. Observation data were analyzed using Analysis of Variance (ANOVA). The first factor was tested using the Least Significant Difference (LSD) test, while the second factor and the interaction of both factors were tested using orthogonal polynomials. The results showed that melatonin administered every 3 days significantly delayed the onset of necrosis and reduced damage to leaves and stomata. A concentration of 119.85 µM delayed necrosis the longest, a concentration of 104 µM minimized the percentage of leaf damage, and a concentration of 109.29 µM minimized the percentage of stomatal damage. The interaction between the application interval and melatonin concentration influenced each other in increasing tea plant tolerance to acid rain stress. The 3-day interval and 100 µM concentration maintained the anatomical integrity of tea leaves and were most effective in increasing chlorophyll a, total chlorophyll, chlorophyll ratio, and total carotene levels in tea plants. These findings provide direct guidance for tea farmers and environmental management practitioners to reduce the impact of acid rain stress. By applying melatonin at the recommended interval and concentration, farmers can increase the resistance of tea plants, maintain productivity, and mitigate economic losses due to acid rain stress.

Keywords


Melatonin; Acid rain; Tea; Anatomy; Pigments photosynthesis

Full Text:

PDF

References


I. Ahmad, G. Zhu, G. Zhou, J. Liu, M. U. Younas, and Y. Zhu, 'Melatonin Role in Plant Growth and Physiology under Abiotic Stress', Int. J. Mol. Sci., vol. 24, no. 10, p. 8759, May 2023, doi: https://doi.org/10.3390/ijms24108759.

C. Zhang et al., 'Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions', Ecotoxicol. Environ. Saf., vol. 192, p. 110315, Apr. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110315.

V. M. Rodríguez-Sánchez, U. Rosas, G. Calva-Vásquez, and E. Sandoval-Zapotitla, 'Does Acid Rain Alter the Leaf Anatomy and Photosynthetic Pigments in Urban Trees?', Plants, vol. 9, no. 7, p. 862, Jul. 2020, doi: https://doi.org/10.3390/plants9070862.

'Morphology and Anatomy', in Postharvest Physiology and Biochemistry of Fruits and Vegetables, Elsevier, 2019, pp. 113-130, https://doi.org/10.1016/B978-0-12-813278-4.00006-3.

K. Sakoda, W. Yamori, T. Shimada, S. S. Sugano, I. Hara-Nishimura, and Y. Tanaka, 'Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis Under Fluctuating Light', Front. Plant Sci., vol. 11, Oct. 2020, doi: https://doi.org/10.3389/fpls.2020.589603.

T. N. Buckley, 'How do stomata respond to water status?', New Phytol., vol. 224, no. 1, pp. 21-36, Oct. 2019, doi: https://doi.org/10.1111/nph.15899.

C. Bowsher and A. K. Tobin, Plant biochemistry, Second edition. Boca Raton, FL: CRC Press, 2021, https://doi.org/10.1201/9781003137986.

M. P. Johnson, 'Photosynthesis', Essays Biochem., vol. 60, no. 3, pp. 255-273, Oct. 2016, doi: https://doi.org/10.1042/EBC20160016.

S. K. Bose and P. Howlader, 'Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review', Environ. Exp. Bot., vol. 176, p. 104063, Aug. 2020, doi: https://doi.org/10.1016/j.envexpbot.2020.104063.

H. Sati, A. V. Chinchkar, P. Kataria, and S. Pareek, 'Melatonin: A potential abiotic stress regulator', Plant Stress, vol. 10, p. 100293, Dec. 2023, doi: https://doi.org/10.1016/j.stress.2023.100293.

B. Debnath et al., 'Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential', Molecules, vol. 23, no. 2, p. 388, Feb. 2018, doi: https://doi.org/10.3390/molecules23020388.

X. Tan, J. Huang, L. Lin, and Q. Tang, 'Exogenous Melatonin Attenuates Cd Toxicity in Tea (Camellia sinensis)', Agronomy, vol. 12, no. 10, p. 2485, Oct. 2022, doi: https://doi.org/10.3390/agronomy12102485.

C. Zhang et al., 'Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions', Ecotoxicol. Environ. Saf., vol. 192, p. 110315, Apr. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110315.

C. Bowsher and A. K. Tobin, Plant biochemistry, 2nd ed. Abingdon, United Kingdom: CRC press, Taylor & Francis group, 2021, https://doi.org/10.1201/9781003137986.

C. Li, D.-X. Tan, D. Liang, C. Chang, D. Jia, and F. Ma, 'Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress', J. Exp. Bot., vol. 66, no. 3, pp. 669-680, Feb. 2015, doi: https://doi.org/10.1093/jxb/eru476.

Y. Cui, M. He, D. Liu, J. Liu, J. Liu, and D. Yan, 'Intercellular Communication during Stomatal Development with a Focus on the Role of Symplastic Connection', Int. J. Mol. Sci., vol. 24, no. 3, p. 2593, Jan. 2023, doi: https://doi.org/10.3390/ijms24032593.

M. Haworth, G. Marino, A. Materassi, A. Raschi, C. P. Scutt, and M. Centritto, 'The functional significance of the stomatal size to density relationship: Interaction with atmospheric [CO2] and role in plant physiological behaviour', Sci. Total Environ., vol. 863, p. 160908, Mar. 2023, doi: https://doi.org/10.1016/j.scitotenv.2022.160908.

A. Ramos, S. Almeida, L. Ganço, P. Costa, and A. Pereira, 'Impact of Acid Rain with Different pH Values in Monstera deliciosa Plants', in The 6th International Congress of CiiEM—Immediate and Future Challenges to Foster One Health, Basel Switzerland: MDPI, Aug. 2023, p. 21. doi: https://doi.org/10.3390/msf2023022021.

Z. J. Ding, Y. Z. Shi, G. X. Li, N. P. Harberd, and S. J. Zheng, 'Tease out the future: How tea research might enable crop breeding for acid soil tolerance', Plant Commun., vol. 2, no. 3, p. 100182, May 2021, doi: https://doi.org/10.1016/j.xplc.2021.100182.

H.-E. Sadia, F. Jeba, Md. Z. Uddin, and A. Salam, 'Sensitivity study of plant species due to traffic emitted air pollutants (NO2 and PM2.5) during different seasons in Dhaka, Bangladesh', SN Appl. Sci., vol. 1, no. 11, Nov. 2019, doi: https://doi.org/10.1007/s42452-019-1421-4.

G. C. Andrade, L. N. Castro, and L. C. D. Silva, 'Micromorphological alterations induced by simulated acid rain on the leaf surface of Joannesia princeps Vell. (Euphorbiaceae)', Ecol. Indic., vol. 116, p. 106526, Sep. 2020, doi: https://doi.org/10.1016/j.ecolind.2020.106526.

Z. Guo et al., 'Effects of Heavy Metals on Stomata in Plants: A Review', Int. J. Mol. Sci., vol. 24, no. 11, p. 9302, May 2023, doi: https://doi.org/10.3390/ijms24119302.

C. Zhang et al., 'Comprehensive transcriptome profiling of tea leaves (Camellia sinensis) in response to simulated acid rain', Sci. Hortic., vol. 272, p. 109491, Oct. 2020, doi: https://doi.org/10.1016/j.scienta.2020.109491.

B. Debnath, M. Li, S. Liu, T. Pan, C. Ma, and D. Qiu, 'Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato', Ecotoxicol. Environ. Saf., vol. 200, p. 110720, Sep. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110720.

R. Xalxo and S. Keshavkant, 'Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L.', Chemosphere, vol. 221, pp. 1-10, Apr. 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.01.029.

H. Sati, A. V. Chinchkar, P. Kataria, and S. Pareek, 'Melatonin: A potential abiotic stress regulator', Plant Stress, vol. 10, p. 100293, Dec. 2023, doi: https://doi.org/10.1016/j.stress.2023.100293.

B. Debnath, M. Li, S. Liu, T. Pan, C. Ma, and D. Qiu, 'Melatonin-mediate acid rain stress tolerance mechanism through alteration of transcriptional factors and secondary metabolites gene expression in tomato', Ecotoxicol. Environ. Saf., vol. 200, p. 110720, Sep. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110720.

E.-U. Liu and C.-P. Liu, 'Effects of Simulated Acid Rain on the Antioxidative System in Cinnamomum philippinense Seedlings', Water. Air. Soil Pollut., vol. 215, no. 1-4, pp. 127-135, Feb. 2011, doi: https://doi.org/10.1007/s11270-010-0464-3.

M. Faizan et al., 'Melatonin and its cross-talk with other signaling molecules under abiotic stress', Plant Stress, vol. 11, p. 100410, Mar. 2024, doi: https://doi.org/10.1016/j.stress.2024.100410.

N. Zhang et al., 'Roles of melatonin in abiotic stress resistance in plants', J. Exp. Bot., vol. 66, no. 3, pp. 647-656, Feb. 2015, doi: https://doi.org/10.1093/jxb/eru336.

S. Cherono et al., 'Exogenous Application of Melatonin Improves Drought Tolerance in Coffee by Regulating Photosynthetic Efficiency and Oxidative Damage', J. Am. Soc. Hortic. Sci., vol. 146, no. 1, pp. 24-32, Jan. 2021, doi: https://doi.org/10.21273/JASHS04964-20.

X. Tan, J. Huang, L. Lin, and Q. Tang, 'Exogenous Melatonin Attenuates Cd Toxicity in Tea (Camellia sinensis)', Agronomy, vol. 12, no. 10, p. 2485, Oct. 2022, doi: https://doi.org/10.3390/agronomy12102485.

S. Ahmad et al., 'Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions', Protoplasma, vol. 257, no. 4, pp. 1079-1092, Jul. 2020, doi: https://doi.org/10.1007/s00709-020-01491-3.

M. B. Arnao and J. Hernández-Ruiz, 'Melatonin as a Chemical Substance or as Phytomelatonin Rich-Extracts for Use as Plant Protector and/or Biostimulant in Accordance with EC Legislation', Agronomy, vol. 9, no. 10, p. 570, Sep. 2019, doi: https://doi.org/10.3390/agronomy9100570.

V. Martinez et al., 'Tolerance to Stress Combination in Tomato Plants: New Insights in the Protective Role of Melatonin', Molecules, vol. 23, no. 3, p. 535, Feb. 2018, doi: https://doi.org/10.3390/molecules23030535.

B. Debnath et al., 'Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential', Molecules, vol. 23, no. 2, p. 388, Feb. 2018, doi: https://doi.org/10.3390/molecules23020388.

Y. Zhang, F. Yang, Y. Wang, Y. Zheng, and J. Zhu, 'Effects of Acid Rain Stress on the Physiological and Biochemical Characteristics of Three Plant Species', Forests, vol. 14, no. 5, p. 1067, May 2023, doi: https://doi.org/10.3390/f14051067.

H. Muhammad Tayyab Khan, R. Mukhtar Balal, Z. Hussain, S. Ayyaz Javed, M. Tauseef Jaffar, and A. Abdullah Alsahli, 'Exogenous application of melatonin mitigate the heat stress in different tomato (Solanum lycopersicum L.) cultivars', J. King Saud Univ. - Sci., vol. 36, no. 3, p. 103086, Mar. 2024, doi: https://doi.org/10.1016/j.jksus.2023.103086.

G. C. Andrade, L. N. Castro, and L. C. D. Silva, 'Micromorphological alterations induced by simulated acid rain on the leaf surface of Joannesia princeps Vell. (Euphorbiaceae)', Ecol. Indic., vol. 116, p. 106526, Sep. 2020, doi: https://doi.org/10.1016/j.ecolind.2020.106526.

N. Lal, 'Effects of Acid Rain on Plant Growth and Development'.

V. M. Rodríguez-Sánchez, U. Rosas, G. Calva-Vásquez, and E. Sandoval-Zapotitla, 'Does Acid Rain Alter the Leaf Anatomy and Photosynthetic Pigments in Urban Trees?', Plants, vol. 9, no. 7, p. 862, Jul. 2020, doi: https://doi.org/10.3390/plants9070862.

G. C. Arya, S. Sarkar, E. Manasherova, A. Aharoni, and H. Cohen, 'The Plant Cuticle: An Ancient Guardian Barrier Set Against Long-Standing Rivals', Front. Plant Sci., vol. 12, Jun. 2021, doi: https://doi.org/10.3389/fpls.2021.663165.

X. Shu, K. Zhang, Q. Zhang, and W. Wang, 'Ecophysiological responses of Jatropha curcas L. seedlings to simulated acid rain under different soil types', Ecotoxicol. Environ. Saf., vol. 185, p. 109705, Dec. 2019, doi: https://doi.org/10.1016/j.ecoenv.2019.109705.

H. Zhu, C. Wu, J. Wang, and X. Zhang, 'The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents', Environ. Sci. Pollut. Res., vol. 25, no. 18, pp. 17499-17508, Jun. 2018, doi: https://doi.org/10.1007/s11356-018-1929-y.

E. Du, D. Dong, X. Zeng, Z. Sun, X. Jiang, and W. De Vries, 'Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China', Sci. Total Environ., vol. 605-606, pp. 764-769, Dec. 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.06.044.




DOI: https://doi.org/10.21107/jsa.v3i1.24

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Bagus Aradea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Science in Agrotechnology
ISSN: 2986-1411
Published by: Universitas Trunojoyo Madura, Indonesia
Organized by: Lembaga Penelitian dan Pengabdian Masyarakat, Universitas Trunojoyo Madura, Indonesia
Address: Gedung Graha Utama Lt.1, Universitas Trunojoyo Madura, Jl. Raya Telang, Kamal Bangkalan, Kode Pos 69162, Madura
Website: https://jsa.trunojoyo.ac.id/jsa
Email: jsa@trunojoyo.ac.id