Physiological and Anatomy Responses of Plants to Various Abiotic Stresses: A Comprehensive Review

Bagus Aradea

Abstract


Global climate change increases abiotic stress (drought, waterlogging, extreme temperatures, acid rain) that threatens food security. This stress disrupts photosynthesis, hormone balance, and cell membranes in plants, thereby reducing crop yields and causing adaptation failure. This study analyzes the physiological and anatomical responses of plants to abiotic stress. The results indicate that plants possess complex defense mechanisms, such as stomatal modulation, root structure, cytoskeletal reorganization, osmo-protectant synthesis, and antioxidant system activation. These stresses also affect the phytochemical composition and nutritional value of crop yields, raising concerns about food quality. This review contributes by integrating various findings from the literature to present a comprehensive overview of physiological and anatomical responses in plants due to abiotic stress. By synthesizing existing data, the authors highlight the importance of developing sustainable agricultural strategies through integrated approaches, such as plant breeding to create stress-tolerant varieties and the application of biotechnology to enhance plant resilience. These efforts form a vital foundation for ensuring food availability that is not only sufficient but also nutritious amid increasingly extreme global environmental challenges.

Keywords


Abiotic stresses; Acid rain exposure; Extreme temperatures; Drought; Waterlogging

Full Text:

PDF

References


S. Kisvarga, K. Horotán, M. A. Wani, and L. Orlóci, “Plant Responses to Global Climate Change and Urbanization: Implications for Sustainable Urban Landscapes”, Horticulturae, vol. 9, no. 9, p. 1051, Sep. 2023, doi: https://doi.org/10.3390/horticulturae9091051.

I. Šola, D. Poljuha, I. Pavičić, A. Jurinjak Tušek, and D. Šamec, “Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources”, Foods, vol. 14, no. 3, p. 416, Jan. 2025, doi: https://doi.org/10.3390/foods14030416.

T. Ulian et al., “Unlocking plant resources to support food security and promote sustainable agriculture”, Plants People Planet, vol. 2, no. 5, pp. 421–445, Sep. 2020, doi: https://doi.org/10.1002/ppp3.10145.

S. Chaudhry and G. P. S. Sidhu, “Climate change regulated abiotic stress mechanisms in plants: a comprehensive review”, Plant Cell Rep., vol. 41, no. 1, pp. 1–31, Jan. 2022, doi: https://doi.org/10.1007/s00299-021-02759-5.

M. Samtiya, R. E. Aluko, T. Dhewa, and J. M. Moreno-Rojas, “Potential Health Benefits of Plant Food-Derived Bioactive Components: An Overview”, Foods, vol. 10, no. 4, p. 839, Apr. 2021, doi: https://doi.org/10.3390/foods10040839.

M. Sun, C.-H. Feng, Z.-Y. Liu, and K. Tian, “Evolutionary correlation of water-related traits between different structures of Dendrobium plants”, Bot. Stud., vol. 61, no. 1, p. 16, Dec. 2020, doi: https://doi.org/10.1186/s40529-020-00292-4.

Y. Zhao, M. Sun, H. Guo, C. Feng, Z. Liu, and J. Xu, “Responses of leaf hydraulic traits of Schoenoplectus tabernaemontani to increasing temperature and CO2 concentrations”, Bot. Stud., vol. 63, no. 1, p. 2, Jan. 2022, doi: https://doi.org/10.1186/s40529-022-00331-2.

D. Xiao, C. Zhang, K. Tian, G. Liu, H. Yang, and S. An, “Development of alpine wetland vegetation and its effect on carbon sequestration after dam construction: A case study of Lashihai in the northwestern Yunnan plateau in China”, Aquat. Bot., vol. 126, pp. 16–24, Oct. 2015, doi: https://doi.org/10.1016/j.aquabot.2015.06.001.

K. Vávrová, J. Knápek, J. Weger, D. Outrata, and T. Králík, “Complex aspects of climate change impacts on the cultivation of perennial energy crops in the Czech Republic”, Energy Convers. Manag. X, vol. 20, p. 100465, Oct. 2023, doi: https://doi.org/10.1016/j.ecmx.2023.100465.

X. Wang, Z. Liu, and H. Chen, “Investigating Flood Impact on Crop Production under a Comprehensive and Spatially Explicit Risk Evaluation Framework”, Agriculture, vol. 12, no. 4, p. 484, Mar. 2022, doi: https://doi.org/10.3390/agriculture12040484.

C. Topali, C. Antonopoulou, and C. Chatzissavvidis, “Effect of Waterlogging on Growth and Productivity of Fruit Crops”, Horticulturae, vol. 10, no. 6, p. 623, Jun. 2024, doi: https://doi.org/10.3390/horticulturae10060623.

B. Aradea, Historiawati, and M. Astiningrum, “Exogenous melatonin applications on acid rain stress mitigation in tea (Camellia sinensis)”, J. Sci. Agrotechnology, vol. 3, no. 1, 2025, doi: https://doi.org/10.21107/jsa.v3i1.24.

C. Zhang et al., “Physiological and biochemical responses of tea seedlings (Camellia sinensis) to simulated acid rain conditions”, Ecotoxicol. Environ. Saf., vol. 192, p. 110315, Apr. 2020, doi: https://doi.org/10.1016/j.ecoenv.2020.110315.

V. M. Rodríguez-Sánchez, U. Rosas, G. Calva-Vásquez, and E. Sandoval-Zapotitla, “Does Acid Rain Alter the Leaf Anatomy and Photosynthetic Pigments in Urban Trees?”, Plants, vol. 9, no. 7, p. 862, Jul. 2020, doi: https://doi.org/10.3390/plants9070862.

H. Zhu, C. Wu, J. Wang, and X. Zhang, “The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents”, Environ. Sci. Pollut. Res., vol. 25, no. 18, pp. 17499–17508, Jun. 2018, doi: https://doi.org/10.1007/s11356-018-1929-y.

I. C. Vasilachi, V. Stoleru, and M. Gavrilescu, “Analysis of Heavy Metal Impacts on Cereal Crop Growth and Development in Contaminated Soils”, Agriculture, vol. 13, no. 10, p. 1983, Oct. 2023, doi: https://doi.org/10.3390/agriculture13101983.

G. Pehoiu et al., “Heavy metals accumulation and translocation in native plants grown on tailing dumps and human health risk”, Plant Soil, vol. 456, no. 1–2, pp. 405–424, Nov. 2020, doi: https://doi.org/10.1007/s11104-020-04725-8.

M. A. Ismael, A. M. Elyamine, M. G. Moussa, M. Cai, X. Zhao, and C. Hu, “Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers”, Metallomics, vol. 11, no. 2, pp. 255–277, 2019, doi: https://doi.org/10.1039/C8MT00247A.

A. Hafeez, R. Rasheed, M. A. Ashraf, F. F. Qureshi, I. Hussain, and M. Iqbal, “Effect of heavy metals on growth, physiological and biochemical responses of plants”, in Plants and Their Interaction to Environmental Pollution, Elsevier, 2023, pp. 139–159. doi: 10.1016/B978-0-323-99978-6.00006-6.

U. E. Chigbu, S. O. Atiku, and C. C. Du Plessis, “The Science of Literature Reviews: Searching, Identifying, Selecting, and Synthesising”, Publications, vol. 11, no. 1, p. 2, Jan. 2023, doi: https://doi.org/10.3390/publications11010002.

J. M. Merigó, F. Blanco-Mesa, A. M. Gil-Lafuente, and R. R. Yager, “Thirty Years of the International Journal of Intelligent Systems : A Bibliometric Review: Thirty Years of The International Journal of Intelligent Systems”, Int. J. Intell. Syst., vol. 32, no. 5, pp. 526–554, May 2017, doi: https://doi.org/10.1002/int.21859.

M. Haghpanah, S. Hashemipetroudi, A. Arzani, and F. Araniti, “Drought Tolerance in Plants: Physiological and Molecular Responses”, Plants, vol. 13, no. 21, p. 2962, Oct. 2024, doi: https://doi.org/10.3390/plants13212962.

Y. Wang et al., “Dynamic changes in membrane lipid composition of leaves of winter wheat seedlings in response to PEG-induced water stress”, BMC Plant Biol., vol. 20, no. 1, p. 84, Dec. 2020, doi: https://doi.org/10.1186/s12870-020-2257-1.

G. Liang, J. Liu, J. Zhang, and J. Guo, “Effects of Drought Stress on Photosynthetic and Physiological Parameters of Tomato”, J. Am. Soc. Hortic. Sci., vol. 145, no. 1, pp. 12–17, Jan. 2020, doi: https://doi.org/10.21273/JASHS04725-19.

C. Hu, E. Elias, W. J. Nawrocki, and R. Croce, “Drought affects both photosystems in Arabidopsis thaliana”, New Phytol., vol. 240, no. 2, pp. 663–675, Oct. 2023, doi: https://doi.org/10.1111/nph.19171.

M. Kouighat, R. Kettani, M. El Fechtali, and A. Nabloussi, “Exploring mechanisms of drought-tolerance and adaptation of selected sesame mutant lines”, J. Agric. Food Res., vol. 15, p. 100911, Mar. 2024, doi: https://doi.org/10.1016/j.jafr.2023.100911.

Z. Li et al., “Improvement of plant tolerance to drought stress by cotton tubby-like protein 30 through stomatal movement regulation”, J. Adv. Res., vol. 42, pp. 55–67, Dec. 2022, doi: https://doi.org/10.1016/j.jare.2022.06.007.

J. C. McElwain, C. Yiotis, and T. Lawson, “Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution”, New Phytol., vol. 209, no. 1, pp. 94–103, Jan. 2016, doi: https://doi.org/10.1111/nph.13579.

X. Yang, M. Lu, Y. Wang, Y. Wang, Z. Liu, and S. Chen, “Response Mechanism of Plants to Drought Stress”, Horticulturae, vol. 7, no. 3, p. 50, Mar. 2021, doi: https://doi.org/10.3390/horticulturae7030050.

S. P. Klein, H. M. Schneider, A. C. Perkins, K. M. Brown, and J. P. Lynch, “Multiple Integrated Root Phenotypes Are Associated with Improved Drought Tolerance”, Plant Physiol., vol. 183, no. 3, pp. 1011–1025, Jul. 2020, doi: https://doi.org/10.1104/pp.20.00211.

H. Manghwar, A. Hussain, I. Alam, M. A. Khoso, Q. Ali, and F. Liu, “Waterlogging stress in plants: Unraveling the mechanisms and impacts on growth, development, and productivity”, Environ. Exp. Bot., vol. 224, p. 105824, Aug. 2024, doi: https://doi.org/10.1016/j.envexpbot.2024.105824.

G. G. Striker and T. D. Colmer, “Flooding tolerance of forage legumes”, J. Exp. Bot., p. erw239, Jun. 2016, doi: https://doi.org/10.1093/jxb/erw239.

J. Wu et al., “Physiology of Plant Responses to Water Stress and Related Genes: A Review”, Forests, vol. 13, no. 2, p. 324, Feb. 2022, doi: https://doi.org/10.3390/f13020324.

S. Wang et al., “Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage”, J. Plant Physiol., vol. 268, p. 153579, Jan. 2022, doi: https://doi.org/10.1016/j.jplph.2021.153579.

C. Tong, C. B. Hill, G. Zhou, X.-Q. Zhang, Y. Jia, and C. Li, “Opportunities for Improving Waterlogging Tolerance in Cereal Crops—Physiological Traits and Genetic Mechanisms”, Plants, vol. 10, no. 8, p. 1560, Jul. 2021, doi: https://doi.org/10.3390/plants10081560.

A. L. Galant, R. C. Kaufman, and J. D. Wilson, “Glucose: Detection and analysis”, Food Chem., vol. 188, pp. 149–160, Dec. 2015, doi: https://doi.org/10.1016/j.foodchem.2015.04.071.

R. A. Ploschuk, D. J. Miralles, T. D. Colmer, E. L. Ploschuk, and G. G. Striker, “Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield”, Front. Plant Sci., vol. 9, p. 1863, Dec. 2018, doi: https://doi.org/10.3389/fpls.2018.01863.

M. Herzog, G. G. Striker, T. D. Colmer, and O. Pedersen, “Mechanisms of waterlogging tolerance in wheat – a review of root and shoot physiology”, Plant Cell Environ., vol. 39, no. 5, pp. 1068–1086, May 2016, doi: https://doi.org/10.1111/pce.12676.

B. Ren, S. Dong, B. Zhao, P. Liu, and J. Zhang, “Responses of Nitrogen Metabolism, Uptake and Translocation of Maize to Waterlogging at Different Growth Stages”, Front. Plant Sci., vol. 8, p. 1216, Jul. 2017, doi: https://doi.org/10.3389/fpls.2017.01216.

H. Luan, B. Guo, Y. Pan, C. Lv, H. Shen, and R. Xu, “Morpho-anatomical and physiological responses to waterlogging stress in different barley (Hordeum vulgare L.) genotypes”, Plant Growth Regul., vol. 85, no. 3, pp. 399–409, Jul. 2018, doi: https://doi.org/10.1007/s10725-018-0401-9.

R. A. Ploschuk, D. J. Miralles, T. D. Colmer, E. L. Ploschuk, and G. G. Striker, “Waterlogging of Winter Crops at Early and Late Stages: Impacts on Leaf Physiology, Growth and Yield”, Front. Plant Sci., vol. 9, p. 1863, Dec. 2018, doi: https://doi.org/10.3389/fpls.2018.01863.

J. Pan, R. Sharif, X. Xu, and X. Chen, “Mechanisms of Waterlogging Tolerance in Plants: Research Progress and Prospects”, Front. Plant Sci., vol. 11, p. 627331, Feb. 2021, doi: https://doi.org/10.3389/fpls.2020.627331.

S. Mishra, K. Spaccarotella, J. Gido, I. Samanta, and G. Chowdhary, “Effects of Heat Stress on Plant-Nutrient Relations: An Update on Nutrient Uptake, Transport, and Assimilation”, Int. J. Mol. Sci., vol. 24, no. 21, p. 15670, Oct. 2023, doi: https://doi.org/10.3390/ijms242115670.

A. Giri, S. Heckathorn, S. Mishra, and C. Krause, “Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots”, Plants, vol. 6, no. 1, p. 6, Jan. 2017, doi: https://doi.org/10.3390/plants6010006.

S. Hu, Y. Ding, and C. Zhu, “Sensitivity and Responses of Chloroplasts to Heat Stress in Plants”, Front. Plant Sci., vol. 11, p. 375, Apr. 2020, doi: https://doi.org/10.3389/fpls.2020.00375.

Q.-L. Wang, J.-H. Chen, N.-Y. He, and F.-Q. Guo, “Metabolic Reprogramming in Chloroplasts under Heat Stress in Plants”, Int. J. Mol. Sci., vol. 19, no. 3, p. 849, Mar. 2018, doi: https://doi.org/10.3390/ijms19030849.

H. F. Shen, B. Zhao, J. J. Xu, W. Liang, W. M. Huang, and H. H. Li, “Effects of heat stress on changes in physiology and anatomy in two cultivars of Rhododendron”, South Afr. J. Bot., vol. 112, pp. 338–345, Sep. 2017, doi: https://doi.org/10.1016/j.sajb.2017.06.018.

J. C. Tovar et al., “Heat stress changes mineral nutrient concentrations in Chenopodium quinoa seed”, Plant Direct, vol. 6, no. 2, p. e384, Feb. 2022, doi: https://doi.org/10.1002/pld3.384.

B. Girma, A. N. Panda, P. C. Roy, L. Ray, S. Mohanty, and G. Chowdhary, “Molecular, biochemical, and comparative genome analysis of a rhizobacterial strain Klebsiella Sp. KBG6.2 imparting salt stress tolerance to Oryza sativa L.”, Environ. Exp. Bot., vol. 203, p. 105066, Nov. 2022, doi: https://doi.org/10.1016/j.envexpbot.2022.105066.

L. Ogunkanmi, D. S. MacCarthy, and S. G. K. Adiku, “Impact of Extreme Temperature and Soil Water Stress on the Growth and Yield of Soybean (Glycine max (L.) Merrill)”, Agriculture, vol. 12, no. 1, p. 43, Dec. 2021, doi: https://doi.org/10.3390/agriculture12010043.

M. Aslam, B. Fakher, M. A. Ashraf, Y. Cheng, B. Wang, and Y. Qin, “Plant Low-Temperature Stress: Signaling and Response”, Agronomy, vol. 12, no. 3, p. 702, Mar. 2022, doi: https://doi.org/10.3390/agronomy12030702.

X. Li et al., “Freezing stress deteriorates tea quality of new flush by inducing photosynthetic inhibition and oxidative stress in mature leaves”, Sci. Hortic., vol. 230, pp. 155–160, Jan. 2018, doi: https://doi.org/10.1016/j.scienta.2017.12.001.

P. Albertos, K. Wagner, and B. Poppenberger, “Cold stress signalling in female reproductive tissues”, Plant Cell Environ., vol. 42, no. 3, pp. 846–853, Mar. 2019, doi: https://doi.org/10.1111/pce.13408.

X. Wei, S. Liu, C. Sun, G. Xie, and L. Wang, “Convergence and Divergence: Signal Perception and Transduction Mechanisms of Cold Stress in Arabidopsis and Rice”, Plants, vol. 10, no. 9, p. 1864, Sep. 2021, doi: https://doi.org/10.3390/plants10091864.

K. Arakawa, J. Kasuga, and N. Takata, “Mechanism of Overwintering in Trees”, in Survival Strategies in Extreme Cold and Desiccation, vol. 1081, M. Iwaya-Inoue, M. Sakurai, and M. Uemura, Eds., in Advances in Experimental Medicine and Biology, vol. 1081., Singapore: Springer Singapore, 2018, pp. 129–147. doi: https://doi.org/10.3390/plants10091864.

G. Zheng, L. Li, and W. Li, “Glycerolipidome responses to freezing- and chilling-induced injuries: examples in Arabidopsis and rice”, BMC Plant Biol., vol. 16, no. 1, p. 70, Dec. 2016, doi: https://doi.org/10.1186/s12870-016-0758-8.

L. Wang, E. Sadeghnezhad, and P. Nick, “Upstream of gene expression: what is the role of microtubules in cold signalling?”, J. Exp. Bot., vol. 71, no. 1, pp. 36–48, Jan. 2020, doi: https://doi.org/10.1093/jxb/erz419.

X. Ren, J. Zhu, H. Liu, X. Xu, and C. Liang, “Response of antioxidative system in rice (Oryza sativa) leaves to simulated acid rain stress”, Ecotoxicol. Environ. Saf., vol. 148, pp. 851–856, Feb. 2018, doi: https://doi.org/10.1016/j.ecoenv.2017.11.046.

R. Xalxo and S. Keshavkant, “Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L.”, Chemosphere, vol. 221, pp. 1–10, Apr. 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.01.029.

S. Ju, L. Wang, and J. Chen, “Effects of Silicon on the Growth, Photosynthesis and Chloroplast Ultrastructure of Oryza sativa L. Seedlings under Acid Rain Stress”, Silicon, vol. 12, no. 3, pp. 655–664, Mar. 2020, doi: https://doi.org/10.1007/s12633-019-00176-8.

B. Debnath, A. Sikdar, S. Islam, K. Hasan, M. Li, and D. Qiu, “Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress”, Molecules, vol. 26, no. 4, p. 862, Feb. 2021, doi: https://doi.org/10.3390/molecules26040862.

C. Zhang et al., “Comprehensive transcriptome profiling of tea leaves (Camellia sinensis) in response to simulated acid rain”, Sci. Hortic., vol. 272, p. 109491, Oct. 2020, doi: https://doi.org/10.1016/j.scienta.2020.109491.

P. Zhang et al., “Chloroplast Damage and Photosynthetic System Disorder Induced Chlorosis in the Leaves of Rice Seedlings under Excessive Biuret”, Agronomy, vol. 13, no. 8, p. 2052, Aug. 2023, doi: https://doi.org/10.3390/agronomy13082052.

R. Xalxo and S. Keshavkant, “Melatonin, glutathione and thiourea attenuates lead and acid rain-induced deleterious responses by regulating gene expression of antioxidants in Trigonella foenum graecum L.”, Chemosphere, vol. 221, pp. 1–10, Apr. 2019, doi: https://doi.org/10.1016/j.chemosphere.2019.01.029.

J. Liu, Y. Zhao, H. Song, J. Chen, and Y. Long, “Antagonism or synergism? Combined effects of enhanced UV-B radiation and acid rain on photosynthesis in seedlings of two C4 plants”, Acta Ecol. Sin., vol. 40, no. 1, pp. 72–80, Feb. 2020, doi: https://doi.org/10.1016/j.chnaes.2018.12.009.

B. Debnath, A. Sikdar, S. Islam, K. Hasan, M. Li, and D. Qiu, “Physiological and Molecular Responses to Acid Rain Stress in Plants and the Impact of Melatonin, Glutathione and Silicon in the Amendment of Plant Acid Rain Stress”, Molecules, vol. 26, no. 4, p. 862, Feb. 2021, doi: https://doi.org/10.3390/molecules26040862.

B. Debnath et al., “Exogenous Melatonin Mitigates Acid Rain Stress to Tomato Plants through Modulation of Leaf Ultrastructure, Photosynthesis and Antioxidant Potential”, Molecules, vol. 23, no. 2, p. 388, Feb. 2018, doi: https://doi.org/10.3390/molecules23020388.

S. Ahmad et al., “Foliar application of melatonin delay leaf senescence in maize by improving the antioxidant defense system and enhancing photosynthetic capacity under semi-arid regions”, Protoplasma, vol. 257, no. 4, pp. 1079–1092, Jul. 2020, doi: https://doi.org/10.1007/s00709-020-01491-3.




DOI: https://doi.org/10.21107/jsa.v3i2.33

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Bagus Aradea

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.


Journal of Science in Agrotechnology
ISSN: 2986-1411
Published by: Universitas Trunojoyo Madura, Indonesia
Organized by: Lembaga Penelitian dan Pengabdian Masyarakat, Universitas Trunojoyo Madura, Indonesia
Address: Gedung Graha Utama Lt.1, Universitas Trunojoyo Madura, Jl. Raya Telang, Kamal Bangkalan, Kode Pos 69162, Madura
Website: https://jsa.trunojoyo.ac.id/jsa
Email: jsa@trunojoyo.ac.id